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G2 AND THE ROLLING DISTRIBUTION

by Gil BOR and Richard MONTGOMERY � )

INTRODUCTION

Consider two balls of different radii, r and R , rolling along each other,
without slipping or spinning. The configuration space for this system is a
5-dimensional manifold Q = SO3 �S2 on which the no-slip/no-spin condition
defines a rank 2 distribution D� � TQ (depending on the radii ratio � = R=r ),
the rolling distribution.

FIGURE 1

Rolling a ball on another ball� ) supported in part by NSF grant DMS-20030177.
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158 G. BOR AND R. MONTGOMERY

Now D� is a non-integrable distribution (unless the balls are of equal size,
i.e. unless � = 1) admitting an obvious 6-dimensional transitive symmetry
group SO3 � SO3 , arising from the isometry groups of each ball. But for balls
whose radii are in the ratio 3 : 1 or 1 : 3, and only for these ratios, something
strange happens : the local symmetry group of the distribution increases from
SO3 � SO3 to G2 , a 14-dimensional non-compact Lie group.

More precisely, let g2 be the real split form of the 14-dimensional
exceptional complex simple Lie algebra gC

2 . An explicit matrix realization
of g2 , appearing in Élie Cartan’s 1894 thesis [5], is given by the set of 7� 7
real matrices of the form 0� A Ωc �2b

Ωb �At �2c
ct bt 0

1A ;
where A 2 sl3(R) (real 3� 3 traceless matrices), b; c 2 R3 (column vectors),
and where for each u = (u1; u2; u3)t 2 R3 we let Ωu denote the antisymmetric
3� 3 matrix

Ωu = 0� 0 �u3 u2

u3 0 �u1�u2 u1 0

1A :
Corresponding to g2 is a closed connected subgroup G2 � SO3;4 , a non-
compact simple Lie group preserving a quadratic form on R7 of signature
type (3; 4) .

Furthermore, G2 contains a 6-dimensional maximal compact subgroup
K � G2 , a double-cover of SO3 � SO3 , with Lie algebra K � g2 consisting
of matrices of the form0�Ωa Ωb �2b

Ωb Ωa �2b
bt bt 0

1A ; a; b 2 R3 :
(The isomorphism K �= so3 � so3 is not so obvious; see Appendix C below.)

Next, for any open subset U � Q , let aut(U;D�jU) be the Lie algebra of
vector fields on U which preserve the restriction of D� to U . Then we have

THEOREM 1. If the radii ratio of the balls is � = 3 or � = 1=3 , thenaut(U;D�jU) �= g2 for any sufficiently small open U � Q. For any other ratio
(other than 1 : 1), aut(U;D�jU) �= so3 � so3 for all open sets U � Q.
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To get an actual D -preserving action of G2 , for radius ratio 3 : 1 or 1 : 3,
one needs to lift D� to the universal (double) cover eQ = S3�S2 (see Section 7
below).

This theorem was communicated to us by Robert Bryant for whom it is
in essence contained in É. Cartan’s notoriously difficult Five Variables Paper
[4] of 1910. R. Bryant wrote to us :

“Cartan himself gave a geometric description of the flat G2 -structure as
the differential system that describes space curves of constant torsion 2 or
1=2 in the standard unit 3-sphere. (See the concluding remarks of Section 53
in Paragraph XI in the Five Variables Paper.) One can easily transform the
rolling balls problem (for arbitrary ratios of radii) into the problem of curves
in the 3-sphere of constant torsion and, in this guise, one can recover the
3 : 1 or 1 : 3 ratio as Cartan’s torsion 2 or 1/2 with a minimum of fuss.
Thus, one could say that Cartan’s calculation essentially covers the rolling ball
case.”

As far as we know, the only available proofs of this beautiful and mysterious
theorem use the sophisticated Cartan method of equivalence or its variants
such as those due to Tanaka [14] and his school. The group G2 (or rather
its Lie algebra) appears in the Cartan method of equivalence applied to the
rolling distribution at the end of a rather lengthy and involved calculation
(to put it mildly), and one is left somewhat puzzled at the appearance of
G2 in this context. Our primary goal in this article is to shed some light
on this theorem in a direct manner, without appealing to Cartan’s method of
equivalence, by showing that the surprising appearance of G2 as a symmetry
group of a certain distribution is in fact rather natural, if one is familiar with
some basic facts on Lie groups and algebras.

To this end, we provide two different constructions of the rolling distribution
for radius ratio 3 : 1, both with built-in G2 -invariance. The first construction
is in terms of the root diagram of g2 , in the spirit of Section 4 of Bryant’s
lecture notes [3]. The second construction is in terms of split octonions, for
which G2 serves as the automorphism group, and can in fact be traced back
to É. Cartan’s 1894 thesis [5], although Cartan does not mention octonions
there. The price we pay for avoiding the Cartan method of equivalence is that
we can thus prove only part of Theorem 1, namely that G2 � Aut( eQ; eD�) for
radii ratio � = 3 or � = 1=3, but we do not prove that G2 is in fact the
full automorphism group for these radius ratios. We hope the reader finds it
worthwhile.

A secondary purpose is to correct an error appearing in the book [12] by
one of us. We had mistakenly said there that the symmetry group for the
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rolling distribution for a ball on a plane (ratio 1 :1) was G2 . In fact, it is
SO3 �E2 , where E2 is the (3-dimensional) group of Euclidean motions of R2 ,
i.e. there are no “non-obvious” symmetries in this case.

A tertiary purpose is to give a feel for the simplest exceptional Lie algebrag2 and its associated Lie groups, and to provide a refresher course on roots
and weights.

FURTHER RESULTS. The G2 -action on eQ does not descend to the rolling
configuration space Q , but its restriction to the maximal compact K � G2

does descend. This descended action of K forms the 2 : 1 cover of the
obvious symmetry group SO3 � SO3 (the kernel of the cover acting trivially
on Q ). These facts are proved below in Section 7. For radii ratio 1 : 1 the
rolling distribution is integrable hence admits an infinite-dimensional symmetry
group.

STRUCTURE OF THE PAPER. In the next section (Section 1) we describe
the background and a wider context for the problem, with references to the
literature. In Section 2 we describe the distributions associated with the rolling
of balls, noting their SO3 � SO3 obvious symmetries.

In Section 3 we describe a general set-up for G -homogeneous distributions,
G a Lie group, in terms of group-theoretic data (G;H;W) , where H � G is
a closed subgroup representing the isotropy subgroup, and where W � g=h
is an Ad(H) -invariant subspace encoding the distribution. Using this data
one can easily compare G -homogeneous distributions. We then identify
the data for the rolling distributions (Q;D�) with respect to the group
G = SO3 � SO3 .

In Section 4 we use the root diagram of G2 to give our first construction
of a G2 -homogeneous distribution data (G2;P;W) . Here P � G2 is a max-
imal parabolic subgroup. The identification of the resulting G2 -homogenous
distribution on G2=P with the rolling distribution on eQ for radius ratios � = 3
or � = 1=3 is done by calculating the group-theoretic data with respect to
the maximal compact subgroup K �= SO4 . This amounts to the embedding ofso3 � so3 in g2 and is the subject of Section 5 (and of Appendix B), which
forms the heart of this article.

In Section 6 we give a second construction of the rolling distribution
with a natural G2 -action. Here we use the fact that G2 is the automorphism
group of the algebra of split octonions eO (analogous to the better-known

L’Enseignement Mathématique, t. 55 (2009)



G2 AND THE ROLLING DISTRIBUTION 161

fact that the compact form of G2 is the automorphism group of the usual
octonions, also called Cayley numbers). We consider the representation of
G2 on the 7-dimensional space of imaginary octonions. This action preserves
a quadratic form of signature (3; 4) and we let C be the corresponding
(ray) projectivized null cone. There is a rank 2 distribution on C defined
solely in terms of octonion multiplication so it is automatically G2 -invariant.
We then extract the G2 -homogeneous distribution data corresponding to this
construction in order to identify it with the first construction.

In Section 7 we prove that the G2 -action on eQ does not descend to Q .

Appendix C is historical. Following suggestions by R. Bryant we looked
into Cartan’s thesis and found that much of the content of Section 6, and
hence of the rolling distribution, already appears there.

A CONFESSION. Despite all our efforts, the “3” of the radius ratio 3 : 1
remains mysterious. In this article, it comes out of the calculations needed for
the embedding of so3 � so3 into g2 (Section 5 and Appendix B). Somehow,
we believe one should be able to “see” the 3 : 1 ratio in the geometry of the
root diagram of g2 , without calculations, just as we were able to see in it
the distribution data (g2; p;W) , but we cannot quite accomplish it, and so we
resort to a tedious calculation with the structure constants of g2 .

AN OPEN PROBLEM. Find a geometric or dynamical interpretation for the
“3” of the 3 : 1 ratio.

For work in this direction see Agrachev [1] and also Kaplan and
Levstein [11].

ACKNOWLEDGEMENTS. Robert Bryant has been crucial, at various key
steps along the way, in steering us in the right direction. Martin Weissmann
supplied us with key information regarding G2 , and the crucial Vogan
reference [16].
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1. HISTORY AND BACKGROUND

1.1 ON DISTRIBUTIONS

Here a distribution means a linear subbundle of the tangent bundle of
a manifold. Mathematicians usually first encounter the integrable and the
contact distributions. Both have infinite-dimensional symmetry groups. Cartan
investigated rank 2 and 3 distributions in 5 dimensions in detail, in his famous
Five Variables Paper [4]. He showed there (among many other results) that
the generic distribution of rank 2 or 3 in 5 dimensions has no continuous
local symmetries.
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The distributions Cartan investigated are those whose growth vector is
everywhere (2; 3; 5) . To say that a distribution D has growth (2; 3; 5) at
a point p means the following. Let X; Y be locally defined vector fields
spanning the distribution near p and set Z = [X; Y] . Then X(p); Y(p); Z(p)
span a 3-dimensional subspace of the tangent space of the manifold — this
is the “3” of (2; 3; 5) —, while fX(p); Y(p); Z(p); [X; Z](p); [Y; Z](p)g span
the entire 5-dimensional tangent space — the “5” of (2; 3; 5) . The (2; 3; 5)
growth condition is an open condition on germs of distributions : if it holds
at a point, it holds in a neighbourhood of that point.

Cartan’s work was purely local. He worked out the complete set of local
invariants for (2; 3; 5) distributions. The invariants Cartan constructed are
certain symmetric covariant tensors defined on the distribution, and can be
thought of as extensions of the Riemann curvature tensor. For the distribution’s
symmetry group to act transitively all of Cartan’s invariants must be constant.
To get the maximal dimensional symmetry group, the Cartan invariants must
all vanish, in which case we call the distribution flat. Any flat distribution is
locally diffeomorphic to that of the Carnot group distribution associated to the
unique graded nilpotent Lie group n = n2;3;5 of growth (2; 3; 5) , and the local
symmetry algebra of such a distribution is g2 . Here, by the local symmetry
algebra of a distribution, we mean the algebra of vector fields X satisfying
[X;Γ(D)] � Γ(D) where Γ(D) is the sheaf of local sections of vector fields
tangent to the distribution.

As mentioned in the above quote from Bryant, Cartan [4] presented several
geometric realizations of the flat case. Bryant and Hsu [2] (see Section 3.4)
pointed out the rolling incarnation of G2 . A (2; 3; 5) distribution will arise
whenever one rolls one Riemannian surface on another, provided their Gaussian
curvatures are not equal. The Cartan invariants vanish if and only if the ratio of
their curvatures are 1 : 9, hence the magic 1 : 3 radii for spheres. We could also
achieve the maximal local symmetry algebra g2 by rolling two hyperbolic
planes along each other, provided their “radii” are in the ratio 1 : 3. More
history, and more instances of the flat G2 system are explained in Byrant [3].

Zelenko and Agrachev have been able to rederive Cartan’s (2; 3; 5)
invariants using a perspective arising from geometric control theory. See [1]
and references therein. Their construction is based on the singular curves.
Every non-integrable rank 2 distribution in dimension n , n > 3, admits a
special family of integral curves known as singular or abnormal [12]. These
are the integral curves which admit no fixed endpoint local variations through
integral curves. In the case of distributions of growth (2; 3; 5) there is precisely
one singular curve (up to reparameterization) through every point in every
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direction tangent to D . In the particular case of rolling one Riemannian
surface along another, the singular curves correspond to rolling one geodesic
along another. The foundation for Zelenko and Agrachev’s reconstruction of
Cartan’s invariants is a kind of Jacobi field theory of singular curves.

Tanaka and his school have established a wonderful generalization of the
passage from the flat nilpotent model n2;3;5 to g2 . Associated to each point
p of a manifold endowed with a non-integrable distribution there is a graded
nilpotent Lie algebra m(p) called by Tanaka and his school the symbol algebra
of the distribution and by others the nilpotentization of the distribution. The
dimension of m(p) is that of the underlying manifold. Call the distribution
of type m if all the different algebras m(p) are isomorphic to the same Lie
algebra m , i.e. if the isomorphism type of the m(p) ’s does not vary with p .
Every (2; 3; 5) distribution is of type n2;3;5 . Out of any given graded nilpotentm , Tanaka outlined a purely algebraic construction of another graded Lie
algebra g � m (possibly infinite-dimensional) called the prolongation of m .
This g represents, roughly speaking, the maximal possible symmetry of a
distribution of type m : the symmetry algebra of any type-m distribution,
after being subjected to a grading process which changes its Lie algebraic
structure, but not its dimension, becomes a subalgebra of g . The prolongation
of the (2; 3; 5) algebra is g2 , and this fact is an algebraic restatement of
Cartan’s work on the flat (2; 3; 5) distributions. Tanaka’s prolongation method
yields a proof that Aut( eQ; eD) � G2 (our Theorem 1) alternative to Cartan’s
proof. Yamaguchi [17] has classified all m ’s whose g ’s are simple. To each
of these pairs (m; g) is associated an intricate differential geometry. Most of
these geometries have not been explored in any detail.

1.2 ON G2

The Lie algebra g2 is the smallest of the exceptional simple Lie algebras.
In 1894 Killing uncovered strong evidence of its existence by constructing the
root lattice for g2 . But the theorem variously known as Serre’s theorem, or
Chevalley’s theorem [13] which asserts that every root lattice is the root lattice
of a Lie algebra had not yet been established, so the existence of g2 was
left hanging. Cartan established the existence of g2 directly by constructing
its 7-dimensional representation, a representation intimately connected with
our second construction of ( eQ; eD) . He did so in one page of his thesis [5],
and we have devoted Appendix C to this page and to its connection with
our second construction. In 1914 Cartan [6] showed that G2 can be realized
as the automorphism group of the octonions. For our split G2 he used split
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octonions. The compact form of G2 appears in the Berger list of potential
holonomy groups of Riemannian metrics. In part because of its appearance
in Berger’s list, the compact G2 has been popular among string theorists, but
its popularity has faded by now in that rapidly changing field.

2. DISTRIBUTION FOR ROLLING BALLS

2.1 THE DISTRIBUTION

FIGURE 2

Rolling a ball on another ball

Take the first ball to be stationary, of radius R , with center at the origin of
a Euclidean space called inertial space. Imagine the second ball, of radius r , in
its own Euclidean space, with points on that ball called material points. Now
roll the second ball on the first. We record the instantaneous position of the
second ball relative to the first by an isometry (rigid motion) '(g;x) : R3 ! R3

mapping each material point P of the second ball to a point

p = '(g;x)(P) = g P+ (R+ r) x
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of inertial space. Here (g; x) 2 SO3 �S2 , R x is the point of contact of the
two balls, (R+ r) x is the center of the second ball, and g 2 SO3 describes
the rotation of the second ball relative to its initial position. See Figure 2.
We have thus identified the configuration space Q for our rolling problem
with the manifold SO3 �S2 . For elementary, visceral accounts of rolling a
ball on a plane, accessible to advanced undergraduates, we recommend [8]
or [10].

Let (gt; xt) 2 Q be a differentiable rolling motion. Let ! = !t 2 R3 �= so3

be the angular velocity of the rolling ball relative to its center, measured with
respect to inertial axes. In other words, if P is a material point fixed on the
second ball, Ṗ = 0, and if we write pt = gt P , then ṗ = ġg�1p = ! � p .
Then we have

PROPOSITION 1. Let Q = SO3 �S2 be the configuration space of two
rolling balls of radii R and r . Let � = R=r . Then a curve (gt; xt) 2 Q
describes a rolling motion without slipping or spinning if and only if

(1) (�+ 1) ẋ = ! � x (no-slip condition),

(2) h!; xi = 0 (no-spin condition, i.e. ! needs to be tangent to the stationary
ball at R x ).

Proof. (1) The contact point between the two balls is p = R x on the
first ball, P = �g�1r x with respect to the second ball. For non-slip, their
velocities must match : ṗ = g Ṗ . Now ṗ = R ẋ and

Ṗ = [� d
dt
g�1]r x� g�1r ẋ = g�1ġg�1r x� g�1r ẋ = g�1r(! � x� ẋ) ;

hence the no-slip condition ṗ = g Ṗ is equivalent to R ẋ = r(!� x� ẋ); from
which (1) follows.

(2) Let P be a material point fixed on the second ball ( Ṗ = 0). From
the inertial point of view, which is to say, from the point of view of the first
ball with its center at the origin of inertial space, the position of this material
point is p = g P+ (R+ r) x , and so its velocity

ṗ = ġ P+(R+r) ẋ = ġg�1[p�(R+r) x]+(R+r) ẋ = !�[p�(R+r) x]+(R+r) ẋ :
Using the no-slip equation, (R+ r) ẋ = r! � x , we get

ṗ = ! � [p� (R+ r) x]+ r! � x = ! � (p� R x) :
The equation ṗ = ! � (p� R x) asserts that the instantaneous motion of the
second ball is a rotation whose axis of rotation (a line) passes through R x ,
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the point of contact of the two balls, in the direction of ! and with angular
velocity of magnitude k!k . The no-spin condition is that the second ball does
not spin about the point of contact of the two balls, which is to say that !
should have no component orthogonal to the common tangent plane of the
two balls, i.e. h!; xi = 0.

The two conditions in the last proposition define together a rank 2
distribution D� � TQ , depending on the radius ratio � = R=r . This is
the rolling distribution.

REMARK. The no-slip condition, (�+ 1) ẋ = !� x , implies the following
somewhat counter-intuitive result : as the moving ball rolls once around a great
circle of the stationary ball, then upon returning it has rotated � + 1 times
around, not � times. It may help to play with two coins of the same monetary
value (� = 1) in order to get convinced of this fact.

2.2 THE OBVIOUS SYMMETRY

The group SO3 � SO3 acts on Q by '(g;x) 7! g0 Æ '(g;x) Æ g00�1 , whereg0; g00 2 SO3 . In terms of (g; x) this action is

(g; x) 7! (g0gg00�1; g0 x) ; g0; g00 2 SO3 :
This action is transitive and preserves the rolling distribution D� for any value
of � = R=r . The proofs of these assertions are easy and left as exercises.

3. GROUP-THEORETIC DESCRIPTION OF THE ROLLING DISTRIBUTION

In the previous section we wrote down a family of distributions D� on
Q = SO3 �S2 , depending on a positive real parameter � and admitting a
transitive SO3 � SO3 -action. Our aim now is to show that for two values of � ,� = 3 and � = 1=3, there is a G2 -action on the universal (double) covereQ = S3 � S2 which preserves the lifted distribution eD� � T eQ (‘lifted’ here
means that the local diffeomorphism eQ ! Q sends eD� to D� ). The G2 -action
on eQ does not descend to Q (we will show this in Section 7), but restricted
to a maximal compact subgroup K � G2 (a double-cover of SO3 � SO3 ), the
action does descend to Q , and in fact gives the SO3 � SO3 -action on Q .
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Now when working with homogeneous manifolds and distributions it is
more convenient to work with the associated group-theoretic data, rather than
the manifolds and distributions themselves. In what follows we give a general
set-up for describing homogeneous distributions in terms of group-theoretic
data. This general description is followed by the specific determination of the
group-theoretic data for the rolling distributions (Q;D�) .

3.1 G -HOMOGENEOUS DISTRIBUTIONS

Let G be a Lie group. A G-homogeneous distribution is a pair (M;D)
where M is a manifold on which G acts transitively and D � TM is a
G -invariant distribution. Fixing a base point m0 2 M with isotropy H � G
we obtain a G -equivariant identification G=H �= M , where gH 7! gm0 .
Differentiating the map G ! M , g 7! gm0 , at g = e (the identity of
G ) we obtain a map g ! Tm0 M , called the infinitesimal action of g
at m0 , and an Ad(H) -equivariant identification g=h �= Tm0 M where h; g
denote the Lie algebras of H; G (respectively). Under this identification, the
distribution plane at m0 , Dm0 � Tm0 M , corresponds to an Ad(H) -invariant
subspace W � g=h .

In this way, every G -homogeneous distribution (M;D) corresponds to
group-theoretic data (G;H;W) , where H � G is a closed subgroup with
Lie algebra h � g and W � g=h is an H -invariant subspace. The adjoint
action of G defines an equivalence relation on the set of pairs (H;W) so
that different choices of base points on Q correspond to equivalent pairs
(H;W) � (H0;W 0) . Conversely, given the data (G;H;W) , we can construct a
G -homogeneous distribution (M;D) by letting G act by left translations on
the right H -coset space M := G=H , and use this G -action to push the plane
D[e] := W � g=h �= T[e](G=H) around all of M so as to define the distribution
D � TM .

On the level of Lie algebras, the data (g; h;W) determines (M;D) up to
a cover. If, as in our case of g = so3 � so3 , the simply connected Lie group
G realizing g is compact, then there are only finitely many homogeneous
distributions (G;H;W) which realize the given Lie algebraic data (g; h;W) .

3.2 GROUP-THEORETIC DATA FOR THE ROLLING DISTRIBUTION

We now determine the data (G;H;W) corresponding to the rolling
distributions (Q;D�) of Section 2.1. Here G = SO3 � SO3 , Q = SO3 �S2 ,
dim H = 1, dim W = 2 and the G -action on Q is given in Section 2.2.
Identify the Lie algebra so3 � so3 of SO3 � SO3 with R3 � R3 , thought of
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as the set of pairs of angular velocities (!0; !00) , with Lie bracket given by
the cross product :

[(!0; !00); (�0; �00)] = (!0 � �0; !00 � �00) :
The first factor !0 corresponds to the first (stationary) sphere, of radius R ,
while the second factor !00 corresponds to the second (rolling) sphere of
radius r .

Fix the base point to be q0 = (1; e3) 2 SO3 �S2 = Q . The isotropy at this
base point is the circle subgroup H consisting of elements of the form (h; h) ,
where h is a rotation around the e3 axis. Thus h = R(e3; e3) � R3 � R3 .
Using the standard metric on g = so3 � so3 = R3 � R3 we can identifyg=h �= h? , so that the plane of the distribution at the base point is given by
some 2-plane in h? . Let us determine this 2-plane explicitly.

PROPOSITION 2. The rolling distribution D� on SO3 �S2 of Proposition 1
is given by the 2 -plane W� � (so3 � so3)=h �= h? defined by the equationsh!0; e3i = h!00; e3i = 0 ; �!0 + !00 = 0 ;
where � = R=r .

Proof. Since h � R3 �R3 is generated by the vector (!0; !00) = (e3; e3) ,h? � R3 � R3 is given by the equation h!0; e3i+ h!00; e3i = 0, i.e.h!0 + !00; e3i = 0 :
From the formula for the SO3 � SO3 -action in §2.2 we compute the

infinitesimal action at the base point so3 � so3 ! Tq0 Q = so3 � e?3 to be the
map

(!0; !00) 7! (!; ẋ) ;
with ! = !0 � !00; ẋ = !0 � e3 :
Substituting these into the rolling conditions at the base point (see §2.1),h!; e3i = 0 ; (�+ 1) ẋ = ! � e3 ;
we obtain h!0 � !00; e3i = 0 ; [�!0 + !00]� e3 = 0 :
Adding the condition of orthogonality to h , h!0+!00; e3i = 0, we obtain the
above equations.

We have thus assembled the group-theoretic data (SO3 � SO3;H;W�)
corresponding to the rolling of two balls of radius ratio � = R=r .
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3.3 SHRINKING AND INFLATING THE GROUP

The following observation will be key later on. Suppose that (M;D) is a
G -homogeneous distribution and (G;H;W) the corresponding data, i.e. H � G
and W � g=h is Ad(H) -invariant. Let G1 � G be a subgroup for which the
restriction of the G -action on M is still transitive. The corresponding shrunk
data is (G1;H1;W1) , where H1 = H \G1 and W1 � g1=h1 corresponds to W
under the linear isomorphism g1=h1 ! g=h , induced by the diffeomorphism
G1=H1

�= G=H .
Now suppose we wish to reverse this process, i.e. we are given a

G1 -homogeneous distribution (M;D) and we wish to extend the G1 -action to
a larger group G . (In our case G1 is a double-cover of the obvious SO3 � SO3 ,
and G is G2 .) Then in terms of group-theoretic data, this amounts to the
following procedure : given the data (G1;H1;W1) , we need to embed it into
the data (G;H;W) by finding an embedding of groups G1 ,! G (injective
homomorphism), which maps H1 to the intersection of the image of G1 with
H , and such that the induced isomorphism g1=h1

�= g=h maps W1 to W .
At the Lie algebra level, this discussion asserts that if we embed the Lie

algebraic data (g1; h1;W1) into (g; h;W) , then, upon passing to a cover (if
necessary), ( eG1; eH1;W1) embeds into ( eG; eH;W) , hence eG acts on ( eM; eD) ,
where eM = eG1= eH1 = eG= eH . We therefore obtain a local action of G on M ,
i.e. an embedding of g in aut(U;DjU) for all sufficiently small U � M .

We thus see that the task of extending the SO3 � SO3 -action on the rolling
distribution (Q;D) to a G2 -action on some cover ( eQ; eD) amounts to finding
a (suitably chosen) embedding so3 � so3 ,! g2 .

4. A G2 -HOMOGENEOUS DISTRIBUTION

We now describe the other main actor in this paper, a distribution with
Lie algebraic data (g2; p;W) . Please see the root diagram of g2 in Figure 3.
This diagram will be explained immediately below. The decorations on the
diagram will be explained a bit later.

4.1 A REMINDER OF THE MEANING OF THE ROOT DIAGRAM

The plane in which the diagram is drawn is the dual of a Cartan subalgebrat � g2 . A Cartan subalgebra of a semi-simple Lie algebra g is a maximal
abelian subalgebra t � g of semi-simple elements, i.e. each ad(T) 2 End(g) ,
T 2 t , is diagonalizable. A given semi-simple Lie algebra g has many
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FIGURE 3

The root diagram of g2

Cartan subalgebras, but they are all conjugate in g 
 C and hence of the
same dimension. The rank of g is the dimension of any one of its Cartan
subalgebras. The rank of g2 is 2 , accounting for the subscript 2 in G2 , and
accounting for the fact that its root diagram is planar, so we can draw it in
the manner of Figure 3. The root diagram of g encodes the adjoint action oft on g , from which one can recover the whole structure of g .

The commutativity of the Cartan subalgebra t implies that the diagonal-
izable endomorphisms ad(T) 2 End(g) , T 2 t , are simultaneously diagonaliz-
able, resulting in a t -invariant decompositiong = t�X� g� ;
where each g� � g is a 1-dimensional subspace of t -common eigenvectors
called a root space. The corresponding eigenvalue depends linearly on the
acting element of t , so is given by a linear functional � 2 t� , called a root.
Thus

[T;X] = �(T)X ; T 2 t ; X 2 g� :
When we draw the root diagram in t� we use the Killing metric in g

to determine the size of the roots and the angles between them. The Killing
metric in g is the bilinear form hX; Yi = tr(ad(X) ad(Y)) . The form is non-
degenerate (non-degeneracy is equivalent to semi-simplicity) and its restriction
to t is also non-degenerate as well. In fact, this restriction is positive-definite
if all the roots are real, as can be arranged in our situation of a split-real
form.
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For a general Cartan subalgebra of a (real) semi-simple algebra, ad(T) may
have complex eigenvalues, hence roots may have complex values and the root
space decomposition of g requires complexifying g ; however, in case g is
the so-called split-form of its complexification, as is the case for our G2 , one
can choose a Cartan subalgebra with only real roots, and no complexification
of g is needed.

4.2 EXAMPLE : THE ROOT DIAGRAM OF g = sl3(R)

We review the more familiar example of sl3(R) before proceeding to g2 .
The Lie algebra sl3(R) is the vector space of 3 by 3 traceless real matrices
with Lie bracket the usual matrix Lie bracket. It is the Lie algebra of the Lie
group SL3(R) of 3 by 3 real matrices with determinant 1. Like g2 , sl3(R)
has rank 2, and is the non-compact split-real form of its complexificationsl3(C) .

As the Cartan subalgebra for sl3(R) we will take the subspace t � sl3(R)
of traceless diagonal matrices,

t := �0�t1 0 0
0 t2 0
0 0 t3

1A ���� t1 + t2 + t3 = 0; ti 2 R
� :

Now sl3(R) has 6 roots (all real) :�ij := ti � tj 2 t� ; i 6= j ; i; j 2 f1; 2; 3g ;
with corresponding root spaces g�ij = REij ;
where Eij is the matrix whose ij entry is 1 and all of whose other entries
are 0. The corresponding root space decompositionsl3 = t�X

i6=j

g�ij

is just the decomposition of a matrix as a diagonal matrix plus its off-diagonal
terms. The metric induced on t by the Killing metric is some multiple of the
standard Euclidean metric, so that hT; T 0i = c

P
i tit0i for some c > 0.

4.3 READING THE ROOT DIAGRAM

Returning to the general semi-simple g , we observe that much of the
structure of g can be read off from its root diagram in a formula-free manner.
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Here is the key observation. Let �; � be two roots with (non-zero) root vectors
E� 2 g� , E� 2 g� , so that

[T;E�] = �(T)E� ; [T;E�] = �(T)E� ; T 2 t :
It then follows immediately from the Jacobi identity that

[T; [E�;E�]] = (�+ �)(T)[E�;E�] :
This means that

(1) if �+ � 6= 0 and is not a root then [E�;E�] = 0 ;

(2) if �+ � 6= 0 and is a root then [E�;E�] 2 g�+� ;

(3) if �+ � = 0, i.e. � = �� , then [E�;E�] 2 t .
This set of three conclusions permits us to see at a glance from the diagram a
fair amount of the structure of g . In the last two cases one can further show
that [E�;E�] is non-zero and determine, with some calculations, the actual
bracket, as will be illustrated in Appendix B.
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FIGURE 4

The root diagram of sl3
4.4 EXAMPLE : READING THE ROOT DIAGRAM OF sl3

Consider the subspace p � sl3 spanned by t and the root spaces
corresponding to the roots marked with dark dots in Figure 4. The diagram,
and properties (1) and (2), shows that p is a 5-dimensional subalgebra. (The
thick dot at the origin stands for the 2-dimensional Cartan subalgebra.) Indeed,p is the subalgebra of upper triangular matrices (including diagonal ones), with
corresponding subgroup P � SL3 , the subgroup of upper triangular matrices

Achevé de composer le 5 juin 2009 à 10 : 27
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with determinant 1. The quotient space SL3(R)=P can be identified with the
space F of full flags in R3 . A full flag is a pair (l; �) , where l is a line
and � is a plane, and l � � � R3 . The standard flag consisting of the
x axis sitting inside the xy plane has isotropy group P . The tangent space
to F at this base point is naturally identified with sl3=p , represented in the
root diagram by the remaining three light dots. Two of the light dots are
marked +. The diagram, combined with properties (1), (2) and (3), shows that
the root spaces corresponding to these roots span a p -invariant 2-dimensional
subspace of sl3=p which Lie generates the root space associated with the third
light dot. This means that we have on F an SL3(R) -invariant rank 2 contact
distribution, i.e. a non-integrable distribution that Lie generates the tangent
bundle.

This distribution can be geometrically interpreted as the tautological contact
distribution on F (“ l moves tangent to � ”). This distribution is spanned by
two vector fields, corresponding to the two +’s in Figure 4. One vector field
generates the flow in which the line l spins within the plane � while that
plane remains fixed. The other vector field generates the flow in which the
plane � rotates about the line l while the line remains fixed.

4.5 READING THE g2 DIAGRAM

Now let us draw conclusions in a similar fashion from the g2 diagram.
There are twelve roots in the diagram (Figure 3) and so 12 root spaces. The
rank of g2 is 2 and so the dimension of g2 is 14 = 2 + 12. Consider the
9-dimensional subspace p � g2 spanned by t and the root spaces associated
with the roots marked by the dark dots in the diagram of Figure 3. Then the
diagram shows that

• p is closed under the Lie bracket, i.e. is a subalgebra (a so-called parabolic
subalgebra, a subalgebra containing a Borel subalgebra).

• Let P � G2 be the corresponding subgroup. It follows that G2 has a
5-dimensional homogeneous space G2=P , whose tangent space g2=p at a
point is represented by the remaining 5 light dots.

• Two of the light dots are marked with +. The diagram shows that their root
spaces generate a 2-dimensional p -invariant subspace W � g2=p , hence a
G2 -invariant rank 2 distribution on G2=P .

• This distribution is of type (2; 3; 5) . Bracketing once gives the light dot
marked with �3 and bracketing the root space for �3 with W again gives
the remaining two light dots.
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5. THE MAXIMAL COMPACT SUBGROUP OF G2

In the previous sections we have assembled the ingredients for group-
theoretic data (SO3 � SO3;H;W�) and (G2;P;W) . Next, in order to define a
G2 -action on some covering space of the rolling distribution (Q;D) , following
the outline of Section 3.3 (“Shrinking and inflating the group”), we need to
embed the data (so3 � so3; h;W�) in (g2; p;W) , for � = 3 and � = 1=3.
This amounts to the appropriate identification of so3 � so3 as the maximal
compact subalgebra of g2 .

5.1 FINDING MAXIMAL COMPACTS

How can we “see” a maximal compact subgroup of G2 tangled within
its root diagram ? Let us look back again at the example of SL3(R) . Here
the maximal compact subgroup is SO3 , with Lie algebra so3 , the set of
3 � 3 antisymmetric matrices. These are spanned by the vectors Eij � Eji ,
i > j . So we see that corresponding to each pair of antipodal roots ��ij we
have one generator of K , lying in the sum of the two corresponding root
spaces.

More generally, for the split real form of any semi-simple Lie algebra
(such as our g2 ), the situation is similar : we get the Lie algebra K of a
maximal compact subgroup K � G by taking the sum of 1-dimensional sub-
spaces, one subspace for each pair of antipodal roots �� . In fact, for a certain
particularly nice choice of root vectors E� 2 g� (a Weyl basis) the sought-for
line is R(E� � E��) , as in the sl3 case.

In the case of g2 we thus have :

• K is the sum of six 1-dimensional subspaces si; li , i = 1; 2; 3, wheresi lies in the sum of the root spaces corresponding to the short roots��i , and li lies in the sum of the root spaces corresponding to the long
roots ��i .

• The isotropy of the K -action, K \ P � K , is given in the diagram by the
vertical segment l3 .

• The distribution plane W1 � K=l3 corresponding to W � g2=p is generated
by s1; s2 (mod l3 ).

We now need to identify this shrunk data (K; l3;W1) with (so3 � so3; h;W�) ,
for � = 3 or � = 1=3.
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5.2 so3 � so3 ' K
Our task is to define an embedding so3 � so3 ,! g2 that maps the data

(so3�so3; h;W�) , for � = 3 or � = 1=3, to the data (K; l3;W1) . This entails the
decomposition of K into the direct sum of two ideals, each isomorphic to so3 .
It would have been quite nice and simple if the sought-for decomposition ofK had been the decomposition into long ( li ) and short (si ). But this is not the
case. For the diagram shows that although the li generate an so3 subalgebra
of K , this subalgebra is not an ideal, so is not one of the summands in the
decomposition. And the si do not even generate a subalgebra. We have to
work harder.

PROPOSITION 3. There is a basis fSi; Li j i = 1; 2; 3g of K , with Si 2 si

and Li 2 li , such that

[Li; Lj] = �ijkLk ; [Li; Sj] = �ijkSk ; [Si; Sj] = �ijk( 3
4

Lk � Sk) ;
where �ijk is the totally antisymmetric tensor on 3 indices (�ijk = 1 if ijk is
a cyclic permutation of 123 , �1 if it is anticyclic, and 0 otherwise).

The proof of this proposition is relegated to Appendix B. It consists of
simple but tedious calculations which we could not “see” in the diagram.
We tried. We were reduced to picking a reasonably nice basis for g2 and
calculating the corresponding structure constants with the help of Serre [13].

Continuing with the notation of the proposition, set

e0i := 3Li + 2Si

4
; e00i := Li � 2Si

4
; i = 1; 2; 3 :

These 6 vectors form a new basis for K and satisfy the standard so3 � so3

commutation relations

(1) [e0i ; e0j] = �ijke0k ; [e00i ; e00j ] = �ijke00k ; [e0i ; e00j ] = 0 ;
thus establishing the Lie algebra isomorphism so3 � so3 ' K .

COROLLARY 1. The map so3 � so3 ! K defined by (ei; 0) 7! e0i ,
(0; ei) 7! e00i , i = 1; 2; 3 , is a Lie algebra isomorphism. It maps h = R(e3; e3)
to l3 = RL3 . It maps the 2 -plane in so3 � so3 defined in the proposition of
§4 for � = 3 to the 2 -plane s1 � s2 � K , thus mapping W� � so3 � so3=h
to W1 � K=l3 . Interchanging the summands in so3 � so3 , i.e. mapping
(0; ei) 7! e0i , (ei; 0) 7! e00i , corresponds to replacing � = 3 by � = 1=3 .

Proof of corollary. The first assertion is Equation (1) above. The rest is
easily verified using the last proposition.
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COROLLARY 2. Let D� be the rolling distribution on Q = SO3 �S2 for
two balls of radius ratio � = R=r . Let eQ = S3 � S2 equipped with the
distribution eD� lifted to the double covering eQ ! Q. Then, for � = 3 or� = 1=3 there is an effective G2 -action on ( eQ; eD�) whose restriction to the
maximal compact group K � G2 covers the obvious SO3 � SO3 -action on
(Q;D�) .

Proof. Let SU2 ! SO3 be the universal double-cover, such that U1 � SU2

(the subgroup of diagonal elements) is mapped onto the subgroup of rotations
around the e3 -axis. Then SU2 � SU2 ! SO3 � SO3 is the universal (four-fold)
cover. Let G1 = SU2 � SU2 = � (1; 1) . Then G1 ! SO3 � SO3 is a double-
cover of SO3 � SO3 . Let H1 � G1 be the image of U1 under the diagonal
embedding SU2 ! SU2 � SU2 followed by the double-cover SU2 � SU2 !
SU2 � SU2 = � (1; 1) . Then under the double covering G1 ! SO3 � SO3 ,
H1 � G1 is mapped isomorphically onto H � SO3 � SO3 . Let Q =
SO3 � SO3 =H = SO3 �S2 and eQ = G1=H1 = S3 � S2 . Then we obtain
a double-cover eQ ! Q so that the G1 -action on eQ covers the SO3 � SO3

action on Q and preserves the distribution eD� on eQ lifted from Q through
the double covering eQ ! Q .

Next, consider each of the two Lie algebra isomorphisms so3�so3
�= K of

the previous corollary (one for � = 3, another for � = 1=3). They each define
a Lie group isomorphism G1

�= K (see Vogan [16, p. 679] or Appendix A),
which identifies H1

�= K\P , and G1 -equivariant identifications (G1=H1; eD�) �=
(G2=P;D) , and thus a G2 -action on eQ = G1=H1 , extending the G1 -action
and preserving eD� , whose restriction to K covers the SO3 � SO3 -action
on Q .

How we came up with the formulae for e0i; e00i : We first observed that
L3 generates the isotropy H = P \ K so that we should have L3 = e03 + e003 .
Since everything is symmetric in 1; 2; 3 we concluded that Li = e0i + e00i ,
i = 1; 2; 3. Next, we noted that S3 commutes with L3 so that we should
have S3 = a e03 + b e003 for some constants a; b , and again by symmetry
Si = a e0i + b e00i , i = 1; 2; 3. Now by using the sought-after commutation
relations for the e0i; e00i and the known commutations for Li; Si we got that
a; b are roots of the equation x2 + x � 3=4 = 0, i.e. a = 1=2; b = �3=2.
Hence,

Li = e0i + e00i ; Si = (e0i � 3e00i )=2 ; i = 1; 2; 3 :
Inverting these equations we obtained the above equations for e0i; e00i .
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178 G. BOR AND R. MONTGOMERY

6. SPLIT OCTONIONS AND THE PROJECTIVE QUADRIC REALIZATION OF eQ
We present a second construction of the rolling distribution with its

natural G2 -action. This construction is based on the split octonions eO , an
8-dimensional real algebra whose automorphism group is our G2 . The rolling
space eQ will be the projectivized null-cone of imaginary octonions. The rolling
distribution on this rolling space will be defined solely in terms of octonion
multiplication, and is thus automatically G2 -invariant. This construction is very
similar to the construction of G2 which appeared in Cartan’s 1894 thesis [5],
although the octonions do not appear there, so the similarity is mysterious at
first. (See our Appendix C where we dispell some of that mystery.) It was
only in 1914 that Cartan described the relation of G2 with octonions [6].

We begin with a description of eO , following the treatment of [9],
in the section titled “The Cayley-Dickson process” (p. 104). There further
consequences and motivation can also be found. The split octonions eO are a
real eight-dimensional algebra with unit and which is neither associative nor
commutative. We identify eO with H2 , the 2-dimensional quaternionic vector
space. Its multiplication law is

(2) (a; b)(c; d) = (ac+d̄b; da+ bc̄) ; a; b; c; d 2 H ;
where q̄ denotes the usual quaternionic conjugate of a quaternion q . The unit
1 2 eO is (1; 0) 2 H2 .

The automorphism group of a real algebra A is defined to be the space
of invertible real linear maps g : A ! A satisfying g(xy) = g(x)g(y) for all
x; y 2 A . G2 is the automorphism group of eO . See [6] or [9].

The unit 1 of any unital algebra is always invariant under its automorphism
group, so the one-dimensional subspace R = R1 � eO is a G2 -invariant
subspace. This subspace has an invariant complement :eO = R1� V ;
where R1 = Re (eO) , V = Im (eO) . In quaternionic terms :

(3) V = Im eO = Im H�H � H�H = eO :
To see the G2 -invariant nature of V , we use the split-octonion conjugation
x 7! x̄ defined by x = (a; b) 2 eO 7! x̄ = (ā;�b) for x 2 eO . Then
x = Re (x)+ Im (x) with Re (x) = (x+ x̄)=2 2 R1, and Im (x) = (x� x̄)=2 2 V .
Also xx̄ = �hx; xi1 2 R1, where hx; yi = Re (xȳ) defines an inner product
of signature (4; 4) on eO which is invariant under the action of G2 . Then V
is the orthogonal complement of 1 2 eO relative to this G2 -invariant inner
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product, and is thus G2 -invariant. Alternatively, an element x 2 eO lies in V
if and only if x2 = hx; xi1 (see [9], Lemma 6.67), providing another proof of
the G2 -invariance of V . And V forms a 7-dimensional inner product space
of signature (3; 4) relative to the restriction of h�; �i . The G2 -action on V
leaves this inner product invariant, so that G2 is realized as a subgroup of
SO3;4 through its representation on V .

The maximal compact subgroup of G2 is K �= SO4
�= (SU2 � SU2)=�(1; 1) .

See [16]. Upon restricting from G2 to K , the representation V decomposes
into irreducibles according to (3). In other words, thinking of SU(2) as unit
quaternions, for (q1; q2) 2 SU2 � SU2 = eK (the universal double-cover of K )
and (a; b) 2 Im (H)�H = V we have (q1; q2) � (a; b) = (q1aq̄1; q1bq̄2) .

In quaternionic terms (3) the quadratic form associated to our (3; 4) inner
product on V is h(v; q); (v; q)i = �jvj2 + jqj2 :
Note that K acts transitively on the product of spheres S2�S3 � V . Let S(V)
denote the space of rays through the origin in V , which is to say the orbit
space for the R+ -action on V n f0g , where R+ acts by scalar multiplication.
Let C � S(V) be the set of null rays, i.e.

C := null rays in V = fR+x � V j hx; xi = 0; x 6= 0g � S(V) := rays in V :
Since G2 preserves the inner product h�; �i on V , G2 acts on C . Now
C is diffeomorphic to S2 � S3 �= S3 � S2 = eQ , as is seen by mapping
R+(q; v) 7! (q; v)=kqk . This diffeomorphism commutes with the K -action,
where the K -action on C arises by restriction of the action of G2 on C ,
and the K -action on eQ = S3 � S2 is the lifting from Q = SO3 �S2 of the
SO3 � SO3 -action of Section 2.2.

We proceed to define a G2 -invariant distribution E on eQ = C . Given a
point R+x = [x] 2 C , set

x? = fy 2 V j hx; yi = 0g ; x0 = fy 2 V j xy = 0g :
Then

PROPOSITION 4. Rx � x0 � (x0)? � x? � V , and the dimensions are
1; 3; 4; 6; 7 .

Proof. Use the definitions of the split octonion product and of the inner
product above.
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Upon projectivizing, the nested sequence of subspaces of this proposition
becomes

0 � x0=Rx � (x0)?=Rx � x?=Rx = T[x]C � V=Rx ;
of dimensions 0; 2; 3; 5; 6. In particular E[x] := x0=Rx , has dimension 2 for
all [x] 2 C , and depends smoothly on [x] , thus defining a rank 2 distribution
on C . This construction of (C;E) depends only on the algebraic structure
of eO , so that G2 = Aut(eO) acts on C preserving the distribution E .

PROPOSITION 5. The (ray) projective quadric C � S(Im eO) is a
5 -dimensional homogeneous space for G2 which carries a G2 -invariant rank 2
distribution E with the same data (G2;P;W) of Section 3.3, and so pushes
down to the rolling distribution (Q;D�) for radius ratios � = 3 or � = 1=3
under the two-to-one cover C = S3 � S2 ! Q = SO3 �S2 .

Steps of the proof of Proposition 5. In the paragraph preceding the
proposition we proved that C is a homogeneous space for G2 , that E
is invariant under this G2 -action, and that C is diffeomorphic to eQ ,
K -equivariantly. It remains to prove that the g2 -data for (C;E) is the data
(g2; p;W) as described in the previous section. We will use the weights for
the G2 -representation space V = Im (eO) .

WEIGHTS FOR THE 7-DIMENSIONAL REPRESENTATION. Here is the weight
diagram for this representation :

fbf
X

ffX

fb b
bbf fr bX f

fX f
fX

fX
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X

���� TTTT """""""" bbbbbbbb

FIGURE 5

Weights and roots associated with the representation V

The weights of the representation V form a subset of the roots of g2 .
In Figure 5 we redrew the root diagram of g2 , marking those roots which
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are weights for V with bull’s-eyes. They are the six short roots and one
zero root. The corresponding weight spaces Vw are all one-dimensional. The
weight marked with a black dot corresponds to a choice of base point c0 2 C .
The meaning of the X’s will be given below.

A REMINDER OF THE MEANING OF THE WEIGHT DIAGRAM. We begin
generally. Let V be a representation of a semi-simple Lie algebra g with
Cartan subalgebra t . A weight for V is an element w 2 t� such that there
is a nonzero vector v 2 V with the property that � � v = w(�) v for all � 2 t
(a simultaneous eigenvector). The space of v ’s for a given weight w is called
the weight space for w and is denoted Vw . If w 2 t� is not a weight we set
Vw = 0. For a finite-dimensional representation V of g the set of weights is
finite, and

V = Lw2t� Vw :
The roots of g are the weights of the adjoint representation, with the
corresponding weight spaces called the root spaces, and denoted by g� .

From � �v = ��v + [�; �]v it follows that if v 2 Vw and � 2 g� then� � v 2 Vw+� . In other words, g� � Vw � Vw+� , which implies the following

VANISHING WEIGHT CRITERION. If w is a weight and � is a root such
that w + � is not a weight, then g� � Vw = 0 .

This is part of the proposition

(4) g� � Vw 6= 0 () w + � is a weight.

It follows that if, as in our case, all weight spaces are 1-dimensional, theng� � Vw = Vw+� whenever w + � is a weight.

A BASIS AND MULTIPLICATION TABLE FOR V = Im (eO) . Let n be an
imaginary quaternion. Then (n; n) and (n;�n) are both null vectors in V .
Take as a basis for V :

e1 = 1
2

(i; i) ; e2 = 1
2

( j; j) ; e3 = 1
2

(k; k) ;(5)

f1 = 1
2

(i;�i) ; f2 = 1
2

( j;�j) ; f3 = 1
2

(k;�k) ;
and

U = (0; 1) :
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182 G. BOR AND R. MONTGOMERY

Then we have the multiplication table :

e2
i = f 2

i = 0

ei fj = fjei = 0 if i 6= j

eiej = fk ; i; j; k a cyclic permutation of 1; 2; 3

fi fj = ek ; i; j; k a cyclic permutation of 1; 2; 3

ei fi = � 1
2
+ 1

2
U

fiei = � 1
2
� 1

2
U

eiU = ei

fiU = �fi :
To complete the multiplication table, use that the conjugate of xy is ȳx̄ , and
that if x 2 V then x̄ = �x . It follows that if x; y 2 V = Im (eO) and yx = z̄
then z = xy . Thus, for example since f̄k = �fk we see that ejei = �fk , for
i; j; k a cyclic permutation of 1; 2; 3.

WEIGHTS FOR THE 7-DIMENSIONAL REPRESENTATION. To find the weights
of the representation of G2 on V = Im (eO) , we really find how the exponential
T of the Cartan t acts first, since it is easier. We use the general fact that
if the roots and weights for the Cartan t are real, then its torus T = exp(t)
(homeomorphic to a Euclidean space) acts on its weight spaces by scaling :
if � = exp(�) 2 T , with � 2 t , then �ew = exp(w(�)) ew for ew 2 Vw . Now
let �1; �2; �3 be nonzero reals with �1�2�3 = 1. Let �i; �i; i and e�i; e�i; ei

be real exponents for i = 1; 2; 3 satisfying �i+ �i+ i = 0. Then the scaling
transformation

ei 7! ��i
1 ��i

2 �i
3 ei ;

fi 7! �e�i
1 �e�i

2 �ei
3 fi ;

together with U 7! U preserves the multiplication table, and hence defines an
element of G2 , providede�i = ��i ; e�i = ��i ; ei = �i

and provided that (�i; �i; i) are multiples of the values from the following
weight table : �i �i i

i = 1 2 �1 �1
i = 2 �1 2 �1
i = 3 �1 �1 2
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These scaling transformations generate a Cartan subgroup T of G2 , and
the table gives the corresponding weights of the representation V . Thus
for example e1 is a weight vector with corresponding weight (2;�1;�1)
relative to t . Here we view t as the collection of real vectors (a; b; c) with
a+b+ c = 0. Looking at the inner products of these vectors we see that they
are arranged on the weight diagram according to :

hdf
ff
f

e2

e3
b b

f2

f3 bbf fr be1 f1U����
�TTTTT

FIGURE 6

The weight space basis

We are now in a position to compute the g2 -data associated to (C;E) .

WEIGHT VECTORS FOR NON-ZERO WEIGHTS ARE NULL VECTORS. Because
the inner product is G2 -invariant, the g2 action on V satisfies h�x; xi = 0
for any � 2 g2 , x 2 V . Take x a weight vector with nonzero weight w , and
take � 2 t with w(�) 6= 0. From h�x; xi = w(�)hx; xi we have that x is a null
vector.

COMPUTING THE ISOTROPY DATA. Set c0 = [e1] , the ray through e1 , as
our base point in C . We now show that the isotropy group of the G2 -action
on C at c0 is P from the G2 data (G2;P;W) , as constructed in Section 4.

We begin at the Lie algebra level, showing that gc0 = p , wheregc0 � g2 denotes the Lie algebra of the isotropy group at c0 . Now,gc0 = f� 2 g2 j � � e1 = �e1 for some real number �g . Hence t is contained
in gc0 .

Now, e1 is a weight vector associated to the weight marked with a black
dot in Figure 6, which is the root ��3 (see Figure 3). According to the
vanishing weight criterion stated above, if � is a root for which ��3 + �
is not a weight then g� � e1 = 0. In other words, the sum of these g� ’s is
contained in gc0 . In Figure 5 those roots � for which ��3 +� is not a root
are marked by X’s. It follows now from the weight diagram that p � gc0 (see
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Figure 5). Since there is no subalgebra of g2 lying strictly between p and all
of g2 we conclude that p = gc0 .

It follows from this Lie algebra computation that the isotropy subgroup
Gc0 contains P and has Lie algebra equalling the Lie algebra p of P .
P is the connected Lie subgroup of G2 whose Lie algebra is p ; thus, to show
that Gc0 = P is to show that Gc0 is connected. We use the homotopy exact
sequence of the fibre bundle Gc0 ! G2 ! C = G2=G[x] . This exact sequence is: : :! �1(C) ! �0(Gc0 ) ! �0(G2) ! �0(C) :
Since C is simply connected and connected we get that �0(Gc0 ) = �0(G2) .
Since �0(G2) = 0 we have the desired connectivity : �0(Gc0 ) = 0.

We have established that the isotropy part of the data for (C;D) is P � G2 .

COMPUTING THE DISTRIBUTION DATA. To complete the proof of Proposi-
tion 5 we now need to show that the infinitesimal g2 -action on C at c0 maps
W � g2=p to Ec0 � Tc0 C .

In Section 4 we saw that W is generated by x1; y2 (mod p ), the root vectors
associated to �1; ��2 (respectively), indicated by the pluses in Figure 3. (We
follow the x; y notation from Figure 7 of Appendix B.) It follows from
rule (4) that x1 � e1 , y2 � e1 are weight vectors associated to the weights�1 � �3; ��2 � �3 (respectively), hence are multiples of the weight vectors
f2; f3 (compare Figures 3 and 6). From the multiplication table following
the description of our basis (5) we see that (e1)0 = spanfe1; f2; f3g , hence
W � c0 = Ec0 , as required.

7. THE FULL ACTION DOES NOT DESCEND TO THE ROLLING SPACE

We now prove that the G2 -action on eQ does not descend to Q . Observe
that Q = Z2nC , where the Z2 � K � G2 is generated by � = (�1; 1) .
Use the following general fact about group actions. Suppose that a group G
(here G2 ) acts effectively on a set C and that Γ � G . (‘Effectively’ means
that the only group element acting as the identity on C is the identity.) Then
the action of an element g 2 G descends to the quotient space ΓnC if and
only if gΓg�1 = Γ . In particular, if Γ is not normal in G then the action of
all of G does not descend to the quotient ΓnC . Returning to our situation,
we see that if the G2 -action were to descend then this Z2 generated by �
would have to be normal. But a discrete normal subgroup of a connected Lie
group is central, and G2 has no center. See Appendix A, or [16]. So our Z2

is not normal, and the G2 -action does not descend.
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REMARK. Had we used lines instead of rays when constructing C = eQ , we
would have arrived at a true projective quadric Qf � P(V) . This Qf is double-
covered by C = eQ and is diffeomorphic to S3 ��I S2 , where the notation��I indicates that we divide out C = S3 � S2 by the Z2 -action generated by
the involution �I(v; h) = (�v;�h) . The G2 -action on eQ does descend to a
G2 -action on Qf since �I commutes with the G2 -action on V . Thus eQ = C
double-covers two spaces, Q and Qf , the distribution eD on eQ pushes down
to both of these covered spaces, but the G2 -action on eQ descends to only
one of them, namely Qf . In addition, Qf is topologically distinct from Q .
Indeed, since �1(SO3) = Z2 there are precisely two topologically distinct
SO3 -bundles over S2 , and both Q and Qf are such bundles : Q is the trivial
SO3 -bundle ; Qf is the other one. We find it curious that the action of G2

on eQ descends to this “false” rolling configuration space Qf , but not to the
real one, Q .

A. APPENDIX

COVERS : TWO G2 ’S

How many connected Lie groups G are there (up to isomorphism) having
a given finite-dimensional simple Lie algebra g for their Lie algebra ? There
is at least one, the simply connected one, denoted eG . We can partially order
all such groups G , writing G < G0 if there is a covering homomorphism
from G0 onto G . Then eG is the largest such group. The smallest such group
is the adjoint group, which is isomorphic to eG=Z( eG) where Z( eG) denotes the
center of eG . (The adjoint group is, by definition, the image of eG under the
adjoint representation eG ! Hom(g) .) All other such groups are of the formeG=Γ where Γ is a subgroup of Z( eG) . So the lattice of such groups G is in
one-to-one correspondence with the lattice of subgroups of Z( eG) , except with
the usual ordering on the lattice of subgroups reversed.

In the case of interest for the present paper, g = g2 , we will show that
the center Z( eG2) of eG2 is the two-element group Z2 . Hence there are exactly
two connected Lie groups with Lie algebra g2 : the simply connected groupeG2 and the adjoint group eG2=Z2 , which is the one we have been denoting
as G2 .

We return to the general setting. The group eG=Γ has fundamental group Γ ,
so that in particular the adjoint group Ad( eG) has fundamental group Z( eG)
equal to the center of eG . Now any finite-dimensional connected Lie group G
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deformation retracts onto its maximal compact subgroup K . It follows that if
the maximal compact subgroup of Ad( eG) has finite fundamental group, then
the center Z( eG) of eG is finite, being isomorphic to the fundamental group of
this maximal compact.

We apply this logic to our setting. We saw above that the Lie algebraK of the maximal compact K of any connected Lie group having Lie
algebra g2 is so3 � so3 . Now the connected Lie groups having Lie algebraso3�so3 all have finite fundamental groups, with either 1, 2 or 4 elements in
them. It follows that the maximal compact of Ad(eG2) has finite fundamental
group, and so the center Z( eG2) of eG2 is finite, with either 1, 2 , or 4
elements in it. We will see that it has 2 elements. Being compact and
central, Z( eG2) must lie in every maximal compact : Z( eG2) � eK � eG2 , whereeK is the maximal compact of eG2 . Because eG2 is simply connected and
deformation retracts onto eK , we know that eK is simply connected, and henceeK �= SU2 � SU2 . Thus Z( eK) is the four element group (�1;�1) . Now the
center Z( eK) of eK need not be the center Z( eG2) of eG2 , but must contain
it : Z( eG2) � Z( eK) . Indeed Z( eG2) is the subgroup of Z( eK) which acts (under
the restriction of the adjoint action) trivially on g2 . A computation using
roots and the restriction of the adjoint representation to eK shows that this
subgroup acting trivially is the two element group with elements (1; 1) and�(1; 1) . See Vogan [16, p. 679]. Consequently Z( eG2) = �(1; 1) = Z2 as
claimed.

It is worth contrasting our situation to one in which the center of eG is
infinite. Take the case g = sl2(R) . Then eG = fSL2(R) and eG = SL2(R) , the
usual matrix group consisting of two-by-two real matrices of unit determinant.
The maximal compact subgroup of SL2(R) is SO2 , and is isomorphic to the
circle group S1 , which has infinite fundamental group Z . It follows that the
center of fSL2(R) is the group of integers Z . The Lie algebra of S1 is the
abelian algebra R , and the simply connected Lie group with it for Lie algebra
is the additive group R (sitting inside fSL2(R) as the cover of SO2 ). The
maximal compact in fSL2(R) is the identity group.
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B. APPENDIX

THE ISOMORPHISM OF K AND so3 � so3 FROM PROPOSITION 3

We complete the proof of Proposition 3 from Section 5 with the explicit
identification of so3 � so3 as the Lie algebra K of the maximal compact
in g2 . We follow Serre [13, p. VI-11] : g2 is Lie-generated by the elements
x; y; h; X; Y; H , subject to the following relations, which one can read off
the root diagram.

[x; y] = h ; [h; x] = 2x ; [h; y] = �2y ;
[X; Y] = H ; [H;X] = 2X ; [H; Y] = �2Y ;
[h;X] = �3X ; [h; Y] = 3Y ; [H; x] = �x ; [H; y] = y ;
[x; Y] = [X; y] = [h;H] = 0 ;
[ad(x)]4 X = 0 ; [ad(X)]2 x = 0 ;
[ad(y)]4 Y = 0 ; [ad(Y)]2 x = 0 :
Taking Lie brackets of the vectors x; y; h; X; Y; H we generate a complete

set fxi; Xi; yi; Yi j i = 1; 2; 3g of root vectors for g2 which, together with the
basis h;H for the Cartan subalgebra, form a basis for g2 as follows :

x3 = x ; X1 = X ; x2 = [x;X1] ; x1 = [x; x2] ; X2 = [x; x1] ; X3 = [X1;X2];

y3 = y ; Y1 = Y ; y2 = �[y; Y1] ; y1 = �[y; y2] ; Y2 = �[y; y1] ; Y3 = �[Y1; Y2]:
We label each root in the diagram with the corresponding root vector.

z vx1

v
y1

vx2

v
y2

vx3 = xvy = y3

vX3

v
Y3

vX = X1

v
Y1 = Y

v X2

v
Y2

""""""
""bbbbbbbb����

�TTTTT
FIGURE 7

A basis for the Lie algebra of G2
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We end up with a “nice” basis with respect to which the structure constants
are particularly pleasant ; they are integers and have symmetry properties which
greatly facilitate the work involved in their determination. Elementary sl2
representation theory further facilitates the calculation. It helps to work with
the root diagram nearby.

SYMMETRY PROPERTIES OF THE STRUCTURE CONSTANTS. Suppose �; �
are two roots such that �+� is also a root. Let E�;E� be the corresponding
root vectors, as chosen above. Then [E�;E�] = c�;�E�+� , for some non-zero
constant c�;� 2 Z . The nice feature of our base is that the structure constants
satisfy

c��;�� = �c�;� :
This cuts the amount of work involved in half, since you need only consider� > 0 (the positive roots are the six dots in the last root diagram marked with
x ’s or X ’s). Combining this with the obvious c�;� = �c�;� (antisymmetry
of Lie bracket) you obtain

c�;�� = c�;�� :
This cuts the amount of work in half again.

PROPOSITION 6. The structure constants of g2 with respect to the basis
of root vectors fxi;Xi; yi; Yi j i = 1; 2; 3g and the Cartan algebra elementsfh;Hg are given as follows. The basis elements are grouped in three sets :
positive (three x’s and three X ’s), negative (three y’s and three Y ’s), and
Cartan subalgebra elements (h and H ).

• [Positive, positive] other than the ones given above, and those which are
zero for obvious reasons from the root diagram (sum of roots which is not
a root) :

[x1; x2] = X3 :
• [Positive, negative]

c�;� y1 y2 y3 Y1 Y2 Y3

x1 1 4 �4 0 12 �12
x2 4 1 �3 1 0 3
x3 �4 �3 1 0 �3 0
X1 0 1 0 1 0 �1
X2 12 0 �3 0 1 36
X3 �12 3 0 �1 36 1
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The 1 ’s on the diagonal stand for the relations [xi; yi] = hi , [Xi; Yi] = Hi ,
where, in terms of our basis fh;Hg for the Cartan subalgebra,

h1 = 8h+ 12H ; h2 = h+ 3H ; h3 = h ;
H1 = H ; H2 = 36(h+ H) ; H3 = 36(h+ 2H) :

• [Cartan, anything] this is coded directly by the root diagram :

❄ ad(h) has eigenvalues and eigenvectors

eigenvalue 3 2 1 0 �1 �2 �3
eigenvectors X2; Y1 x3 x1; y2 X3; Y3; h;H x2; y1 y3 X1; Y2

❄ ad(H) has eigenvalues and eigenvectors

eigenvalue 2 1 0 �1 �2
eigenvectors X1 X3; x2; y3; Y2 x1; y1; h;H X2; x3; y2; Y3 Y1

Proof. This is elementary, using only the Jacobi identity, but takes time.
We will give as a typical example the calculation of [x1; x2] :

[x1; x2] = [x1; [x;X]] (by definition of x2)= [x; [x1;X]]+ [X; [x; x1]] (Jacobi identity)= [X; [x; x1]] (since [x1;X] = 0)= [X;X2] = X3 (by definitions of X2;X3) .

The rest of the relations are derived in a similar fashion.

Now we are ready to define the generators of the Lie algebra of a maximal
compact subgroup K � G2 . Let

L1 = X1 � Y1 ; L2 = X2 � Y2

6
; L3 = X3 � Y3

6
;

S1 = x1 � y1

4
; S2 = x2 � y2

2
; S3 = x3 � y3

2
:

Using the commutation relations of the last proposition one easily checks that

[Li; Lj] = �ijkLk ; [Li; Sj] = �ijkSk ; [Si; Sj] = �ijk( 3
4

Lk � Sk) :
NOTE. The strange-looking coefficients 2; 4; 6 in the definition of the Li; Si

are chosen precisely so that we get these pleasing commutation relations.
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C. APPENDIX

THE ROLLING DISTRIBUTION IN CARTAN’S THESIS

In É. Cartan’s thesis [5, p. 146], we find the following constructions :
consider V = R7 = R3 �R3 �R with coordinates (x; y; z) , where x; y 2 R3 ,
z 2 R , and the following 15 linear vector fields (hence linear operators) on V :

• Xii = �xi�xi + yi�yi + 1
3

P3
j=1(xj�xj � yj�yj ) , i = 1; 2; 3 .

• Xi0 = 2z�xi � yi�z � xj�yk + xk�yj , (i; j; k) 2 f(1; 2; 3); (2; 3; 1); (3; 1; 2)g .

• X0i = �2z�yi + xi�z + yj�xk � yk�xj , (ijk) 2 A3 .

• Xij = �xj�xi + yi�yj , i 6= j , i; j = 1; 2; 3 .

Cartan makes the following claims without proofs :

(1) The linear span of these 15 operators is a 14 -dimensional Lie subalgebrag � End(V) isomorphic to g2 .

(2) g preserves the quadratic form on V given by

J = z2 + x � y :
(3) The linear group G � GL(V) generated by g acts transitively on the

projectivized null cone of J .

(4) G preserves the system of 6 Pfaffian equations on V , given by the
6 components of (� := z dx� x dz+ y� dy = 0 ;� := z dy� y dz+ x� dx = 0 ;
which have as a consequence(1 := z dz+ x � dy = 0 ;2 := z dz+ y � dx = 0 :

(5) G preserves a 5 -parameter family of 3 -dimensional linear subspaces of
V , contained in the null cone of J ,(

x� z a+ b� y = 0 ;
y� z b+ a� x = 0 ;

where
a � b+ 1 = 0 :

Our goal in this appendix is to sketch proofs of these claims, provide a minor
correction in one place, relate Cartan’s construction to the octonions, and show
how they contain, in essence, the construction of the rolling distribution eQ
via projective geometry, as in Proposition 5 from Section 5.
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C.1 ISOMORPHISM OF g WITH g2

PROPOSITION 7. g is a 14 -dimensional Lie subalgebra of End(V) ,
isomorphic to g2 , with a maximal compact subalgebra generated byfXij � Xji j i 6= jg and fXi0 � X0ig :

Proof. It is convenient to put g in block matrix form. For each u 2 R3

let Ωu 2 End(R3) be given by v 7! u� v ; i.e.

Ωu = 0� 0 �u3 u2

u3 0 �u1�u2 u1 0

1A :
Define the linear map � : sl3(R)� R3 � R3 ! End(V) by

�(A; b; c) = 0� A Ωc �2b
Ωb �At �2c
ct bt 0

1A :
Now � is clearly injective, hence its image is a 14-dimensional linear subspace
of End(V) . Denote the components of A; b; c by aij; bi; ci (respectively), then
it is easy to check that�(A; b; c) = �X

i;j aijXij �X
i

biXi0 +X
i

ciX0i :
This shows that g is the image of � and hence a 14-dimensional subspace
of End(V) .

To show that g is a Lie algebra one calculates that

[�(A; b; c); �(A0; b0; c0)] = �(A00; b00; c00) ;
where

A00 = [A;A0]+ cb0t � c0bt � 2bc0t + 2b0ct + [b � c0 � c � b0]I ;
b00 = Ab0 � A0b+ 2c� c0 ;
c00 = �Atc0 + A0tc+ 2b� b0 :

These formulae show that the subspace K � g given byK = f�(Ωa; b; b) j a; b 2 R3g
forms a 6-dimensional subalgebra. One can easily verify that K is isomorphic
to so3 � so3 via (!0; !00) 7! �(Ωa; b; b) , where

a = !0 + !00
2

+ !0 � !00
2
p

2
; b = !00 � !0

2
p

2
:
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The formulae also show that the subspace t � g generated by �(D; 0; 0) ,
where D is a traceless diagonal matrix, is a 2-dimensional abelian subalgebra.
We fix this as our Cartan subalgebra. Let �i := aii 2 t� , i = 1; 2; 3. Then the
roots of g , relative to t , are ��i , i = 1; 2; 3, and �(�i + �j) , i 6= j . The
corresponding root spaces are spanned by Xi0 for �i , X0i for ��i , Xij , i > j ,
for �i + �j , and Xij , i < j , for �(�i + �j) . One now carefully draws these
14 roots in the plane t� , using the Killing inner product hD;D0i = tr(DD0) ,
and obtains the g2 root diagram as in Section 4.

C.2 INVARIANCE OF J

Let G2 � GL7(R) be the subgroup generated by g .

PROPOSITION 8. J is G2 -invariant.

Proof. This is equivalent to showing that every X 2 g is J -antisymmetric,
i.e. that X anti-commutes with0� 0 I=2 0

I=2 0 0
0 0 1

1A :
One now easily checks that the set of J -antisymmetric matrices consists

of the matrices of the form0� A Ωc �2b̃
Ωb �At �2c̃
c̃t b̃t 0

1A ;
where A 2 End(R3) and b; b̃; c; c̃ 2 R3 . Looking at the formula for �(A; b; c) ,
we see that g is the subset of the J -antisymmetric matrices satisfying tr A = 0,
b = b̃ , c = c̃ (a codimension 7 condition).

C.3 G2 -INVARIANCE OF THE PFAFFIAN SYSTEM

First some generalities. A Pfaffian system on a manifold M is given locally
by the common kernels of a finite set of 1-forms,�1 = : : : = �m = 0 :
Two sets of 1-forms f�1; : : : ; �mg ; f�1; : : : ; �ng ;
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give equivalent systems if one can express each element of one set as a linear
combination (with coefficients in C1(M) ) of the elements of the other set.
We write this as �i � 0 mod �1; : : : ; �n ; i = 1; : : : ;m ;
and similarly for the � ’s.

Consequently, if we want to prove that a system �1 = : : : = �m = 0 is
preserved by some diffeomorphism f : M ! M we must show that

f ��i � 0 mod �1; : : : ; �m ; i = 1; : : : ;m ;
and if we want to show that the flow of some vector field X on M preserves
the system we must show thatLX�i � 0 mod �1; : : : ; �m ; i = 1; : : : ;m :

Given such a system we can consider the common kernels Dx � TxM of
the 1-forms at each point x 2 M . This is well defined independently of the
1-forms chosen to represent the system. If dim Dx (the rank of the system)
is constant we obtain a distribution D � TM (a subbundle of the tangent
bundle). But the rank may vary. For example, the system on R given by
x dx = 0 has rank 1 at x = 0 and rank 0 for x 6= 0. However, if G acts
on M preserving a Pfaffian system, then the rank must be constant along the
G -orbits.

CARTAN’S PFAFFIAN SYSTEM. RANK JUMPS. A CORRECTION. Due to
jumping of rank, as discussed in the last remark, the Pfaffian system which
Cartan defined by the vanishing of the 6 components of �; � cannot
be G2 -invariant, even when restricted to eC , the J null cone. For at
(e1; 0; 0) 2 V the system reduces to dx2 = dx3 = dz = 0, and so has
rank 4. On the other hand, at the point (e1; e2; 0) the system is equivalent
to dy1 = dx2 = dz � dy3 = dz + dx3 = 0, and so has rank 3. And both
points lie in eC nf0g , which is a single G2 -orbit, contradicting G2 -invariance.
A related problem with Cartan’s claim (4) is his claim that 1 = 2 = 0 is a
consequence of � = � . But this claim holds only on the z 6= 0 part of eC .

Both errors are fixed by imposing the extra equation  := 1 � 2 = 0.
Then, as in Section C.4, we do obtain a G2 -invariant system on V .
Furthermore, as proved immediately below, the two equations 1 = 2 = 0 are
indeed a consequence of � = � = 0;  = 0 on eC , and are a consequence of� = � = 0 on the subset z 6= 0 of eC . So Cartan’s claim is correct on the open
dense set z 6= 0 of the null cone eC � V . (See also page 11 of Bryant’s paper
on geometric duality [3], where he adds the equation  = 0 to � = � = 0.)
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PROPOSITION 9. The Pfaffian system on V given by � = � = 0;  = 0 is
G2 -invariant. On eC the system is equivalent to � = � = 0; 1 = 2 = 0 . On
the subset z 6= 0 of eC it is equivalent to � = � = 0 .

Proof. We prove the claims of the last two sentences first. Note that1 + 2 = dJ . It follows that on eC , where J = 0, we have that 1 = 2 = 0
is a consequence of  := 1 � 2 = 0. Thus, restricted to eC , the system� = � = 0;  = 0 is equivalent to � = � = 0; 1 = 2 = 0. Next, note
that x � � � y � � = z . It follows that on z 6= 0 the equation  = 0 is a
consequence of � = � = 0.

It remains to establish G2 -invariance. We need to show thatLX�i � LX�j � LX � 0 mod �i; �j;  ;
for all X = �(A; b; c) 2 g . Divide into 3 cases, corresponding to (A; 0; 0) ,
(0; a; 0) and (0; 0; b) in our coordinatization of g .

CASE 1 : X = �(A; 0; 0) , A 2 sl3(R) .

LEMMA 1. If A 2 End(R3) and u; v 2 R3 , then

A(u� v)+ Atu� v+ u� Atv = tr A(u� v) :
Proof. Divide in 2 cases. If At = �A then A = Ωu for some u 2 R3 ,

tr A = 0 and the identity reduces to the Jacobi identity for the cross product.
If At = A then can assume w.l.o.g. that A is diagonal and do an explicit easy
calculation.

Now, since X(x; y; z) = (A x;�Aty; 0) and � = zdx � xdz + y � dy , we
get, using the lemma and tr A = 0, thatLX� = zAdx� A xdz� Aty� dy� y� Atdy= A(zdx� xdz+ y� dy) = A� � 0 mod � :
Similarly, LX� = �At� � 0 (mod �) . Finally, LX = (A x)�dy�x�(Atdy) = 0.

CASE 2 : X = �(0; b; 0) , b 2 R3 .

Here X(x; y; z) = (�2bz; b� x; b � y) , and one calculates thatLX� = �b ; LX� = �b� � ; LX = �b � � :
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CASE 3 : X = �(0; 0; c) , c 2 R3 . The proof for this case is very similar
to the previous case. Just interchange x and y , and b and c .

This completes the proof of invariance, and hence the proof of the
proposition.

C.4 RELATION WITH OCTONIONS

Recall the basis ei; fi; U of Section 6 for V (imaginary split octonions)
with its consequent multiplication table. Make the change of basis ei 7! �ei ,
keeping fi;U as they were, thus changing the signs of some entries of the
multiplication table. Use this new basis Ei = �ei; fi; U to identify V with
R3 � R3 � R by setting (x; y; z) = P xiEi +P yi fi + zU 2 V . Referring to
the multiplication table we compute

(x; y; z)(x0; y0; z0) = ��y� y0 � zx0 + z0x;
x� x0 + zy0 � z0y; 1

2
(x � y0 � x0 � y)

�+ 1fzz0 + 1
2

(x � y0 � x0 � y)g :
The last term is in the real part of the split octonions, and not in V . It
follows from this formula that (x; y; z)2 = J , of Cartan’s claim (2) stated
above. Multiplying out (x; y; z)(dx; dy; dz) we find that

(x; y; z)(dx; dy; dz) = (�; �; 1
2

(1 � 2))+ 1f 1
2

(1 + 2)g ;
where �; �; 1; 2 are as in Cartan’s claim (4). It follows that any element
of G2 = Aut(eO) preserves J and preserves the Pfaffian system of Cartan’s
claim (4). The distribution D defined by this system is, upon restriction to
the null cone fJ = 0gnf0g , precisely the distribution D which we defined in
the final section of our paper : D(x; y; z) := f(a; b; c) : (x; y; z)(a; b; c) = 0g .
It follows that Cartan’s construction, pushed down to the space of rays using
the R+-action, yields precisely our eQ .
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Paris, Nony, 1894. (Reprinted in Œuvres complètes, Partie I, vol. 1.)
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